SPECIFICATIONS NI 4461/4462

204.8 kS/s, 2-Input/2-Output or 4-Input Sound and Vibration Device/Module

This document lists specifications for the NI PCI/PXI-4461 and NI PCI/PXI-4462 (NI 4461/4462) Dynamic Signal Acquisition (DSA) devices. These specifications are typical at 25 °C unless otherwise stated. The operating range for the PXI-4461/4462 is 0 to 55 °C, and the operating range for the PCI-4461/4462 is 0 to 50 °C. All accuracies listed are valid for up to one year from the time of the device external calibration. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Caution The inputs of this sensitive test and measurement product are not protected for electromagnetic interference for functional reasons. As a result, this product may experience reduced measurement accuracy or other temporary performance degradation when cables are attached in an environment with electromagnetic interference present. Refer to the Declaration of Conformity (DoC) for this product for details of the standards applied to assess electromagnetic compatibility performance. To obtain the DoC, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Terminology

Maximum and *minimum* specifications characterize the warranted performance of the instrument within the recommended calibration interval and under the stated operating conditions. These specifications are subject to production verification or guaranteed by design.

Typical specifications are specifications met by the majority of the instruments within the recommended calibration interval and under the stated operating conditions, based on measurements taken during production verification and/or engineering development. The performance of the instrument is not warranted.

Supplemental specifications describe the basic function and attributes of the instrument established by design and are not subject to production verification. They provide information that is relevant for the adequate use of the instrument that is not included in the previous definitions.

All performance specifications are *typical* unless otherwise noted. These specifications are valid within the full operating temperature range. Accuracy specifications are valid within ± 5 °C of the self calibration or over the full operating range as specifically noted.

Analog Input

This section lists the NI 4461/4462 analog input (AI) specifications.

Input Characteristics

Number of simultaneously sampled inp	out channels
NI 4461	2
NI 4462	4
Input configuration	Differential or pseudodifferential (50 Ω between negative input and chassis ground), each channel independently software selectable
Input coupling	AC or DC, each channel independently software selectable
A/D converter (ADC) resolution	24 bits
ADC type	Delta-sigma
Sample rates (f_s) ,	CONTROL OF THE STATE OF THE STA
samples-per-second (S/s)	1 kS/s to 204.8 kS/s in 181.9 μS/s increments, maximum
ADC modulator oversample rate	
$1.0 \text{ kS/s} \le f_{\text{s}} \le 51.2 \text{ kS/s}$	128 f _s
$51.2 \text{ kS/s} < f_{\text{s}} \le 102.4 \text{ kS/s}$	$64f_{\mathrm{s}}$
$102.4 \text{ kS/s} < f_{\text{s}} \le 204.8 \text{ kS/s}$	$32f_{\rm s}$

Input Signal Range

Gain (dB)	Full-Scale Range (V _{pk})*
30	±0.316
20	±1.00
10	±3.16
Revenied These Och and heart baron payer	±10.0
-10	±31.6
-20	±42.4

Sample Clock Timebase Rate

Ratio between sample rate (f_s) and sample clock timebase rate

nd hippudhov	Sample Clock Timebase Rate		
Sample Rate (f _s)	Low-Frequency Alias Rejection Enabled (Default)	Low-Frequency Alias Rejection Disabled	
$1.0 \text{ kS/s} \le f_{\text{s}} \le 1.6 \text{ kS/s}$	$16,384f_{\rm s}$	$512 f_{\rm s}$	
$1.6 \text{ kS/s} < f_s \le 3.2 \text{ kS/s}$	$8,192 f_{\rm s}$	1948	
$3.2 \text{ kS/s} < f_s \le 6.4 \text{ kS/s}$	$4,096 f_{\rm s}$	ransier Charac	
$6.4 \text{ kS/s} < f_s \le 12.8 \text{ kS/s}$	$2,048 f_{\rm s}$	Offset (Residua	
$12.8 \text{ kS/s} < f_s \le 25.6 \text{ kS/s}$	1,024 f _s	Gain DC Couple	
$25.6 \text{ kS/s} < f_s \le 51.2 \text{ kS/s}$	512 f _s	dahala carek (496).	
$51.2 \text{ kS/s} < f_s \le 102.4 \text{ kS/s}$	256 f _s	256 f _s	
$102.4 \text{ kS/s} < f_{\text{s}} \le 204.8 \text{ kS/s}$	128 f _s	$128 f_{\rm s}$	

FIFO buffer size	2,047 samples
FIFO buffer size	

Data transfers Direct memory access (DMA)

Input Common-Mode Range

TATICICITIE	Shirk even	Configuration	
Gain (dB) Input	Differential (V _{pk})*	Pseudodifferential (V _{pk})	
≥0	Positive input (+)	±12	±12
20	Negative input	±12	Low-French ±10
<0	Positive input (+)	±42.4	±42.4
handaidhl (HW)	Negative input	±42.4	±10

Input Overvoltage Protection

Differential configuration	±42.4 V _{pk} ¹	inis.
Pseudodifferential configuration		
Positive terminal	$\pm 42.4~V_{pk}$	
Negative terminal (shield)	$\pm 10.0~V_{pk}$	

Transfer Characteristics

Al Offset (Residual DC)

Gain (dB)	DC-Coupled Offset*,†, Max, T _{cal} ‡ ±5 °C (±mV)	DC-Coupled Offset*, Max, Over Operating Temperature Range (±mV)
30	0.1	E811.00 23 2881.P
20	0.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	0.5	3
0	0.7	7 against st
-10	5	30
-20	7	90358 900 70 OMORO CALO

^{*} Source impedance $\leq 50 \Omega$.

Al Gain Amplitude Accuracy

1 kHz input tone $\pm 0.03~dB~max$ $T_{cal} \pm 5$ °C $(T_{cal} = ambient temperature at which last self calibration was performed.)$ (Listed accuracy is valid 24 hours following a self calibration.) ±0.2 dB max Over operating temperature range

[†] Listed offset is valid 24 hours following a self calibration. ‡ T_{cal} = ambient temperature at which last self calibration was performed.

¹ With respect to chassis ground.

ni.com | NI 4461/4462 Specifications

Amplifier Characteristics

Input Impedance

Input Impedance	Differential Configuration	Pseudodifferential Configuration
Between positive input and chassis ground	1 MΩ 217 pF	1 MΩ 217 pF
Between negative input and chassis ground	1 MΩ 229 pF	50 Ω

Common-Mode Rejection Ratio (CMRR)

Gain (dB)	DC-Coupled CMRR (dBc)*,†	AC-Coupled CMRR (dBc) ^{†, :}
30	105	70
20	101	
10	90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	80	
-20, -10	60	65

Dynamic Characteristics

Specification	Low-Frequency Alias Rejection Enabled (Default)	Low-Frequency Alias Rejection Disabled
Alias-free bandwidth (BW) (passband)	DC to 0.4 f _s	DC to $0.4535 f_{\rm s}$
Alias rejection,	104 dBc	120 dBc

^{* ≤ 1} kHz † Differential configuration ‡ 50 or 60 Hz

Specification	Low-Frequency Alias Rejection Enabled (Default)	Low-Frequency Alias Rejection Disabled
Alias rejection by frequency	Input frequency $> 0.6 f_s$	0.5465 f_s < input frequency < 127.4535 f_s , where 1.0 kS/s $\leq f_s \leq$ 51.2 kS/s
	To V	0.5465 f_s < input frequency < 63.4535 f_s , where 51.2 kS/s < f_s ≤ 102.4 kS/s
ransier C	iaracterística 19 es	0.5465 f_s < input frequency < 31.4535 f_s , where 102.4 kS/s < f_s < 204.8 kS/s
-3 dB BW	$0.484 f_{\rm s}$	0.491 f _s

Figure 1. NI 4461/4462 Digital Filter Input Frequency Response with Low-Frequency Alias Rejection Enabled

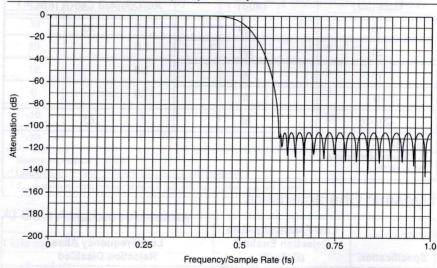



Figure 2. NI 4461/4462 Digital Filter Input Frequency Response with Low-Frequency Alias Rejection Disabled

AC coupling

-3 dB cutoff frequency

3.4 Hz

-0.1 dB cutoff frequency

22.6 Hz

Figure 3. Magnitude Response of AC Coupling Circuit (1 Hz to 1 kHz)

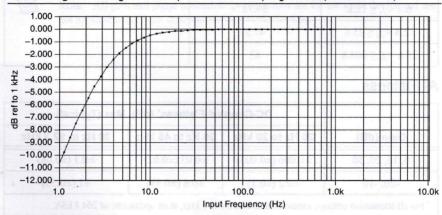


Figure 4. Phase Response of AC Coupling Circuit (1 Hz to 1 kHz)

80.000
70.000
60.000
98
40.000
10.000
10.000
10.000
10.000
Input Frequency (Hz)

ADC Filter Delay

Low-Frequency Alias Rejection Enabled (Default)		Low-Frequency Alias Rejection Disabled
Sample Rate (kS/s)	Filter Delay (Samples)	Filter Delay (Samples)
$1.0 \le f_{\rm s} \le 1.6$	32.96875	63
$1.6 < f_{\rm s} \le 3.2$	33.9375	
$3.2 < f_{\rm s} \le 6.4$	35.875	
$6.4 < f_{\rm s} \le 12.8$	39.75	
$12.8 < f_{\rm s} \le 25.6$	47.5	
$25.6 < f_{\rm s} \le 204.8$	63	

Al Flatness

	DC-Coupled Flatness* (dB), Max (Typical)			
Gain (dB)	20 Hz to 20 kHz	20 Hz to 45 kHz	20 Hz to 92.2 kHz	
0, 10, 20, 30	±0.006 (±0.003)	±0.03 (±0.02)	±0.1 (±0.08)	
-20, -10	±0.2 (±0.1)	±0.6 (±0.33)	±1 (±0.55)	

Al Interchannel Gain Mismatch

gly.	DC-Coupled Mismatch (dB)*		AC-Coupled Mismatch (dB)
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz	20 Hz
30	0.004	0.008	0.004
0, 10, 20	0.003	0.003	
-20, -10	0.04	0.25	0.006

Al Interchannel Phase Mismatch

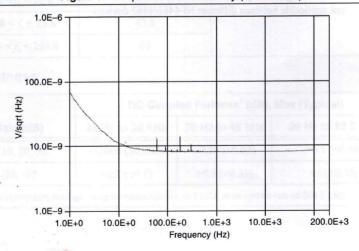
	DC-Coupled N	lismatch (deg)*	AC-Coupled Mismatch (deg)
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz	20 Hz
30	0.10	0.60	0.08
20	0.04	0.15	
0, 10	0.015	0.08	
-20, -10	0.7	Line of marines of the	

Note All gain and phase mismatch specifications are for the same device and are not applicable between different NI 4461/4462 devices.

Al Phase Linearity

*SetquoD-DA	Linearity (deg)	
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz
0, 10, 20, 30	±0.01	±0.03
-20, -10	±0.10	±1

Al Idle Channel Noise


Idle Channel Noise*,†	
dBV _{rms}	μV _{rms}
-118 dBV _{rms}	$1.3~\mu V_{rms}$
-115 dBV _{rms}	$1.8 \mu V_{rms}$
-111 dBV _{rms}	$2.8 \mu V_{rms}$
	dBV _{rms} -118 dBV _{rms} -115 dBV _{rms}

^{*} Source impedance ≤ 50 Ω † 30 dB gain

Al Spectral Noise Density

AI spectral noise density (with Enhanced Alias

Figure 5. Al Spectral Noise Density (30 dB Gain)

Al Dynamic Range

Gain	Dyna	nmic Range (dBFS)*, Min	(Typical)	
Setting (dB)	1 kS/s ≤ f _s ≤ 51.2 k S/s	51.2 kS/s < f _s ≤ 102.4 kS/s	102.4 kS/s < f _s ≤ 204.8 kS/s	
30	103 (105)	100 (102)	96 (98)	
20	111 (113)	108 (110)	104 (106)	
10	114 (117)	111 (114)	106 (110)	
• 0	116 (118)	113 (114)	107 (110)	
-10	107 (108)	104 (105)	101 (102)	
-20	105 (107)	102 (104)	98 (101)	

Al Spurious Free Dynamic Range (SFDR)

Gain Setting (dB)	SFDR (dBc)*,†,‡
qnt evelV s ₃₀ ° xHx f ,nis0 8b 0 3	106 102 A KS/B (-1 dB)
0, 10, 20	108
-20, -10	110

 $^{^*}f_{\rm s}$ = 204.8 kS/s † 1 kHz input tone, input amplitude is the lesser of -1 dBFS or 8.91 V_{pk}. ‡ Measurement includes all harmonics.

Figure 6. SFDR 51.2 kS/s (-1 dBFS, 0 dB Gain, 1 kHz Sine Wave Input)

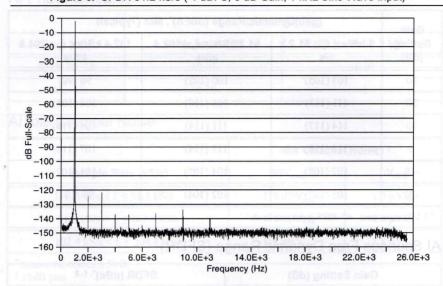
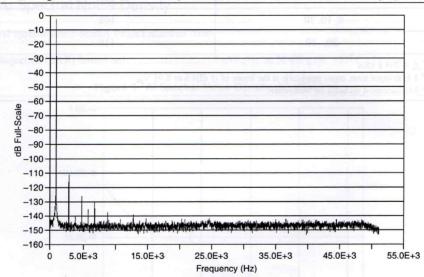



Figure 7. SFDR 102.4 kS/s (-1 dBFS, 0 dB Gain, 1 kHz Sine Wave Input)

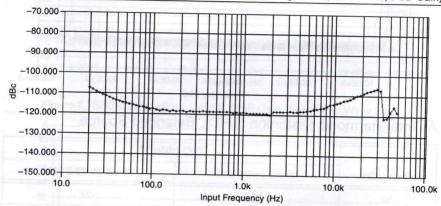
-10 -20 -30 -40 -50 -60 -70· -80 -90 -100 -120 -160 70.0E+3 90.0E+3 110.0E+3 30.0E+3 50.0E+3 10.0E+3 Frequency (Hz)

Figure 8. SFDR 204.8 kS/s (-1 dBFS, 0 dB Gain, 1 kHz Sine Wave Input)

Al Total Harmonic Distortion (THD), Balanced Source

	THD (dBc)*,†	
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz
30	-100	-97
20	-109	-106
0, 10	-107	-104
-10	-108	-107
-20	-107	-106

 $^{^*}f_{\rm s}$ = 204.8 kS/s, 92.8 kHz BW, differential configuration † Input amplitude is the lesser of -1 dBFS or 8.91 V_{pk}.


AI THD, Unbalanced Source

10.	THD (dBc)*,†		
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz	
30	-100	-93	
20	-106	-94	

	THD (dBc)*,†	
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz
10	-105	-92
0	-97	-87
-10	-90	-88
-20	-91	-89

Input amplitude is the lesser of -1 dBFS or 8.91 V_{pk}.

Figure 9. Al THD (Balanced Source with Differential Configuration, 204.8 kS/s, 0 dB Gain)

Al THD Plus Noise (THD+N), Balanced Source

	THD+N	(dBc)*
Gain (dB)	51.2 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 92.2 kHz [‡]
30	-103	-94 · · · · · · · · · · · · · · · · · · ·
20	-107	-95
10	-108	-96
0	52b) CHT -107	-96
20 Hz to 92.2 stu	26 Hz to 30 kHz	(Sain (dB)

	THD+I	N (dBc)*
Gain (dB)	51.2 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 92.2 kHz [‡]
-10	-96	-91 DE
-20	-94	-88

^{*} Input amplitude is the lesser of -1 dBFS or 8.91 V_{pk} , differential configuration. † 23.2 kHz measurement BW ‡ 92.8 kHz measurement BW

Al THD+N, Unbalanced Source

Gain (dB)	THD+N (dBc)*	
	51.2 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 92.2 kHz [‡]
30	-103	-91
20	-107	-93
10	-108	-91
0 (39	-104	orige El -87 lenge
-10	-94	-86
-20	se al tomorb 10 -93	-86

 $^{^{\}star}$ Input amplitude is the lesser of -1 dBFS or 8.91 $V_{pk\cdot}$ † 23.2 kHz measurement BW

Al Intermodulation Distortion (IMD)

Gain (dB)	IMD (dBc)*
20, 30 a louni salt ed abose veltos	shure-road -109
10 bas we would	Je-mail ov reid-107 and at the state of
0	-104 septi 1908 sausil
-20, -10	

^{‡ 92.8} kHz measurement BW

Crosstalk, Input Channel Separation

Crosstalk for Adjacent (Non		adjacent) Channels (dBc) ^{*, 1}
Gain (dB)	1 kHz Signal	92.2 kHz
30	-130 (-140)	-110 (-124)
0, 10, 20	-138 (-145)	-110 (-124)
-20, -10	-96 (-124)	-60 (-108)

^{*} Source impedance \leq 50 Ω

Onboard Calibration Reference

DC level	5.000 V ±2.5 mV
Temperature coefficient	±5 ppm/°C max
Long-term stability	±15 ppm/ √1,000 hr

Integrated Electronic Piezoelectric (IEPE)

0 mA, 4 mA ±15%, or 10 mA ±15%, each channel independently software selectable	

Note Use the following equation to make sure that your configuration meets the IEPE compliance voltage range.

$$V_{common-mode} + V_{bias} + V_{full-scale}$$
 must be 0 to 24 V,

where $V_{common-mode}$ is the common-mode voltage seen by the input channel,

 V_{bias} is the DC bias voltage of the sensor, and

 $V_{full-scale}$ is the AC full-scale voltage of the sensor.

Channel input impedance

[†] Input amplitude is the lesser of -1 dBFS or 8.91 V_{pk}.

Transducer Electronic Data Sheet (TEDS) Support

Supports Transducer Electronic Data

Sheet (TEDS) according to the

Note For more information about TEDS, go to ni.com/info and enter the Info

Analog Output (NI 4461 Only)

This section lists the NI 4461 analog output (AO) specifications.

Output Characteristics

Number of output channels	2, simultaneously sampled	
Output configuration	Differential or pseudodifferential (50 Ω to chassis ground on shield), each channel independently software selectable	
DAC resolution	24 bits	
DAC type	Delta-sigma	
Update rates (f _s)	1 kS/s to 204.8 kS/s in 181.9 μS/s increments maximum	
DAC modulator oversample rate		
$1.0 \text{ kS/s} \le f_{\text{s}} \le 1.6 \text{ kS/s}$	$8,192 f_{\rm s}$	
$1.6 \text{ kS/s} < f_{\text{s}} \le 3.2 \text{ kS/s}$	$4,096 f_{\rm s}$	
$3.2 \text{ kS/s} < f_{\text{s}} \le 6.4 \text{ kS/s}$	2,048 f _s	
$6.4 \text{ kS/s} < f_{\text{s}} \le 12.8 \text{ kS/s}$	1,024 f _s	
$12.8 \text{ kS/s} < f_{\rm s} \le 25.6 \text{ kS/s}$	512 f _s	
$25.6 \text{ kS/s} < f_{\text{s}} \le 51.2 \text{ kS/s}$	256 f _s	
$51.2 \text{ kS/s} < f_s \le 102.4 \text{ kS/s}$	128 f _s	
$102.4 \text{ kS/s} < f_s \le 204.8 \text{ kS/s}$	0.00 64 f _s bank goldense anovamité	
FIFO buffer size	1,023 samples	
Data transfers	DMA	

Output Signal Range

Attenuation (dB)	Full-Scale Range (V _{pk})*	
40	±0.1	
20 1000 51.45100 194	±1.0	
arthures are box 0	±10.0	

Transfer Characteristics

AO Offset (Residual DC)

Attenuation (dB)	Maximum Offset*, T _{cal} ± 5 °C†(±mV)	Maximum Offset, Over Operating Temperature Range (±mV)
20, 40	this abused to let monthly	2 samman bres
0	National de pares, green la Se ensividad vital butanolmis.	10

AO Gain Amplitude Accuracy

Specifications valid at any attenuation setting with a 1 kHz output signal. T_{cal} ±5 °C ±0.04 dB max

 $(T_{cal} = ambient temperature at which last self calibration was performed.)$

(Listed accuracy is valid 24 hours following a self calibration.) Over operating temperature

range.....±0.1 dB max

Output Characteristics

Output coupling	DC
Short circuit protection	Indefinite protection between positive and negative
Minimum working load	600 Ω

^{*} Listed offset is valid 24 hours following a self calibration.

† T_{cal} = ambient temperature at which last self calibration was performed.

Output Impedance

Output Impedance	Differential Configuration	Pseudodifferential Configuration
Between positive output and chassis ground	2.4 kΩ	70 Ω
Between negative output and chassis ground	2.4 kΩ	50 Ω
Between positive and negative oùtputs	22 Ω	22 Ω

Dynamic Characteristics

Image rejection	75 dB min < 768 kHz,
	66 dB min > 768 kHz
-3 dB BW	$0.487 f_{\rm s}$

Table 1. DAC filter delay (samples)

Sample Rate (kS/s)	Interpolation Factor	Filter Delay (Samples)
$1.0 \le f_{\rm s} \le 1.6$	128	36.6
$1.6 < f_{\rm s} \le 3.2$	64	36.8
$3.2 < f_s \le 6.4$	32	37.4
$6.4 < f_{\rm s} \le 12.8$	ARCER (SEDRA	vd earl 38.5 mg2 6
$12.8 < f_s \le 25.6$	8	40.8
$25.6 < f_{\rm s} \le 51.2$	4	43.2
$51.2 < f_s \le 102.4$	2	48.0
$102.4 < f_{\rm s} \le 204.8$	2.5 kg/s 1 254.8 kg	32.0

AO Flatness

For all attenuation settings, measurements relative to 1 kHz, at an update rate of 204.8 kS/s $\,$

20 Hz to 20 kHz	±0.008 dB max	
20 Hz to 92.1 kHz	±0.1 dB max	

AO Idle Channel Noise

	Maximum Idle Channel Noise					
Attenuation (dB)	102.5 kS/s (30 kHz BW)		204.8 kS/s (80 kHz BW)		204.8 kS/s (500 kHz BW)	
	dB V _{rms}	μV_{rms}	dB V _{rms}	μV_{rms}	dB V _{rms}	μV_{rms}
40	-106	5	-101	9	-87	45
20	-106	5	-101	9	-86	50
0	-96	16	-93	23	-73	224

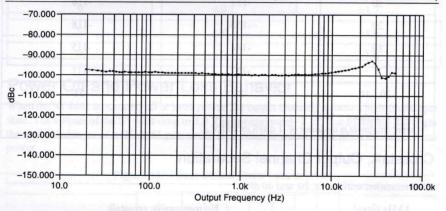
AO Dynamic Range

	Minimu	imum Dynamic Range (dBFS)*		
Attenuation (dB)	102.5 kS/s (30 kHz BW) [†]	204.8 kS/s (80 kHz BW) [†]	204.8 kS/s (500 kHz BW) ¹	
40	83	78	64	
20	103	98	83	
0	113	110	90	

^{* 1} kHz output frequency, -60 dBFS output amplitude † Noise equivalent bandwidth

AO Spurious Free Dynamic Range (SFDR)

Attenuation (dB)	SFDR (dBc)*, †,‡
40	87
20	94
0	98


^{*} f_s = 204.8 kS/s † 1 kHz output frequency, -1 dBFS output amplitude ‡ Measurement includes all harmonics.

AO THD

	SE COM	THD (dBc)*	
Attenuation (dB)	102.5 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 20 kHz‡	204.8 kS/s 20 Hz to 92.1 kHz [‡]
40	-99	-92	-92
20	-98	-95	-93
, 0	-97	-94	-83

^{* -1} dBFS output amplitude

Figure 10. AO THD (204.8 kS/s, 0 dB Gain, 65,536 Samples, 92.8 kHz Measurement BW)

AO THD+N

	THD+N (dBc)*			
Attenuation (dB)	102.5 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 80 kHz‡	204.8 kS/s 20 Hz to 92.1 kHz**	
40	-83	-76	-63 and	
20	-98	-92	-79	
0	-97	-86	-68	

^{* -1} dBFS output amplitude

^{† 30} kHz measurement BW ‡ 92.8 kHz measurement BW

^{† 30} kHz measurement BW

^{‡ 80} kHz measurement BW

^{** 500} kHz measurement BW

AO Intermodulation Distortion (IMD)

Attenuation (dB)	IMD (dBc)*
40	-99
20	-104
0	-104

Crosstalk, Output to Input Channel Separation

explorations bundwice	Crosstalk	(dBc)*,†
Sain (dB)	1 kHz Signal	92.1 kHz
30	-151	-118
20	-150	-118
10	-144	-115
0	-137	-111
-20, -10	-87	-51

^{*} Source impedance \leq 50 Ω

Crosstalk, Output Channel Separation

All attenuation settings (0, 20, and 40 dB)

1 kHz signal	No measurable crosstalk	
92.1 kHz signal	-110 dBc	

AO Interchannel Gain Mismatch

All attenuation settings

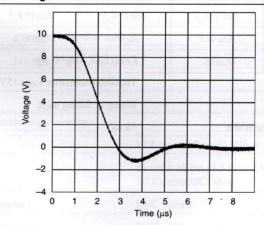
20 Hz to 92.1 kHz 0.03 dB

 $^{^{\}dagger}$ Output amplitude is the lesser of -1 dBFS or 8.91 V_{pk}

AO Interchannel Phase Mismatch

All attenuation settings		
20 Hz to 20 kHz	0.1°	Votes i no A
20 Hz to 92.1 kHz	0.2°	

Note All gain and phase mismatch specifications are for the same device and are not applicable between different NI 4461/4462 devices.


AO Phase Linearity

Linearit		ity (deg)
Attenuation (dB)	20 Hz to 20 kHz	20 Hz to 92.1 kHz
0	±0.1	±1.7
20	± 0.1	±1.6
40	±0.1	±1.8

Power Off and Power Loss Behavior

When the NI 4461 is powered off or loses power, the output channels assume a high-impedance state. The outputs of the NI 4461 drop to 0.0 V in approximately 8 μs . The following illustrates the typical behavior of an NI 4461 generating 10 V when powered off or when the device loses power.

Figure 11. Power Off and Power Loss Behavior

Frequency Timebase Characteristics

Internal timebase	The contract of the contract o
Accuracy	±20 ppm, over operating temperature range
Aging	8 ppm in first year; 5 ppm max/year after first year
External timebase	Equal to accuracy of external timebase

Triggers

Analog trigger		
Purpose	Start trigger	
Source	198	
NI 4461	AI0 or AI1	
NI 4462	AI0, AI1, AI2, or AI3	
Level	Full scale, programmable	
Slope Slope	Positive (rising) or negative (falling), software selectable	
Resolution	24 bits	
Hysteresis	Programmable	
Digital Trigger		
Purpose	Start or reference trigger	
Source	PFI0, PXI_Trig<06>	
Compatibility	Transistor-transistor logic (5V TTL)	
Polarity	Rising or falling edge	
Minimum pulse width	10 ns	

General Specifications

This section lists general specification information for the NI 4461/4462.

Bus Interface

PCI or PXI	3.3 V or 5 V signal environment	
DMA channels	VALUE TIL ET EN	
, NI 4461	2, analog input and analog output	
NI 4462	1, analog input	

Synchronization

PXI	
CLK_10	Multiple, full chassis
PXI_STAR	Up to 14 devices per chassis
PCI	PCT-3463/a460prior learner miletage (b) \$0.°C
RTSI	Up to 3 devices across ribbon cable

Power Requirements

Voltage	NI PXI-4461	NI PCI-4461	NI PXI-4462	NI PCI-4462
+5 V	990 mA	2,200 mA	990 mA	1,900 mA
+3.3 V	1,430 mA	1,750 mA	1,750 mA	2,300 mA
+12 V	170 mA	40 mA	130 mA	100 mA
-12 V	110 mA	40 mA	70 mA	40 mA

Physical

Dimensions (not including connectors)			
PCI	17.5 cm × 9.9 cm (6.9 in. × 3.9 in.) PCI slot		
PXI	16 cm × 10 cm (6.3 in. × 3.9 in.) 3U CompactPCI slot		
Analog I/O connectors	BNC female		
Digital trigger connector	SMB male		

Weight		
PCI	226.8 g (8.0 oz)	
PXI	241 g (8.5 oz)	
Measurement Category ¹	r ⁿ species a see south Sini	

Caution Do *not* use the NI 4461/4462 for connections to signals or for measurements within Categories II, III, or IV.

Environmental

Operating Environment

Ambient temperatur	e range				
PXI-4461/4462	o, Ildi abasan A doskosa por chassi		cordance with IEC -2.)	60068-2-1 and	
PCI-4461/4462		0 to 50 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)			
Relative humidity ra	ange		oncondensing cordance with IEC	60068-2-56.)	
Altitude	Salversla	2,000 m (at 25 °C ambient temperature)			
Pollution Degree		2	A SEE SEE	y ex	
Indoor use only.	Am OZT	Am 02V.1	Arabi		
Storage Envir	onment				
Ambient temperature range		-20 to 70 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)			
Relative humidity range		5 to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)			

¹ Measurement Category is also referred to as Installation Category.

Shock and Vibration (PXI Only)

30 g peak, half-sine, 11 ms pulse	
(Tested in accordance with IEC 60068-2-27	
Test profile developed in accordance with	
MIL-PRF-28800F.)	
Security Case 1. Case 1. Case Canada	
5 to 500 Hz, 0.3 g _{rms}	
5 to 500 Hz, 2.4 g _{rms}	
(Tested in accordance with IEC 60068-2-64	
Nonoperating test profile exceeds the	
requirements of MIL-PRF-28800F, Class 3.)	

Calibration

Self-calibration	On software command, the device computes gain and offset corrections relative to high-precision internal reference. Recommended whenever ambient temperature differs from T _{cal} by more than ±5 °C. T _{cal} = ambient temperature at which the last calibration was performed. Listed accuracies are valid for 30 days following a self calibration. 1 year		
Interval			
External calibration interval			
Warm-up time	15 minutes		

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the *Online Product Certification* section.

Note For EMC compliance, operate this product according to the documentation.

CE Compliance (€

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit $\mathtt{ni.com/certification}$, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.